Mechanisms of DNA sensing on graphene oxide.
نویسندگان
چکیده
Adsorption of a fluorophore-labeled DNA probe by graphene oxide (GO) produces a sensor that gives fluorescence enhancement in the presence of its complementary DNA (cDNA). While many important analytical applications have been demonstrated, it remains unclear how DNA hybridization takes place in the presence of GO, hindering further rational improvement of sensor design. For the first time, we report a set of experimental evidence to reveal a new mechanism involving nonspecific probe displacement followed by hybridization in the solution phase. In addition, we show quantitatively that only a small portion of the added cDNA molecules undergo hybridization while most are adsorbed by GO to play the displacement role. Therefore, it is possible to improve signaling by raising the hybridization efficiency. A key innovation herein is using probes and cDNA with a significant difference in their adsorption energy by GO. This study offers important mechanistic insights into the GO/DNA system. At the same time, it provides simple experimental methods to study the biomolecular reaction dynamics and mechanism on a surface, which may be applied for many other biosensor systems.
منابع مشابه
Tunable biomolecular interaction and fluorescence quenching ability of graphene oxide: application to "turn-on" DNA sensing in biological media.
As a platform for "turn-on" DNA sensing, the level of oxidation of graphene oxide strongly affects its fluorescence quenching ability and binding interactions to single-stranded oligodeoxyribonucleotides (ssODNs), leading to a broad range of sensitivity. Fine-tuning the level of oxidation of graphene oxide yields a DNA-detection platform that is highly sensitive in serum and biological media.
متن کاملFe3O4 Magnetic Nanoparticles/ Graphene Oxide Nanosheets/Carbon Cloth as an Electrochemical Sensing Platform
In this work, for eliminating the (RR1346), considered to be a waste in wastewater from dye industries electrochemical advanced oxidation process has been used. Graphene oxide coated carbon cloth (GO/CC) and Fe3O4 /GO coated carbon cloth (Fe3O4/GO/CC) electrodes has been fabricated by synthesized GO and Fe3O4 nanoparticles. Characteristic properties such as surface morphology as the main reason...
متن کاملElectrochemical production of Graphene Oxide and its application as a novel Hydrogen Peroxide sensor
Herein, graphene oxide is produced by electrochemical oxidation method from graphite rod to examine its hydrogen peroxide sensing ability. The electrochemically produced graphene oxide is characterized by SEM and XRD. A few layers of Graphene Oxide(GO) sheets and corrugations in graphene sheets appeared intensely crumpled and folded into a typical wrinkled structure after electrochemical oxidat...
متن کاملGasniGraphene-manganase oxide nanocomposite as a hydrogen peroxidase sensor
A feasible and fast method to fabricate hydrogen peroxide sensor was investigated by graphene-manganase nanocomposite carbone paste electrode. In the present work, in first step, the graphene was synthesized by chemical method and in second step, manganese oxide nanoparticle was doped on graphene. graphene-manganase nanocomposite was characterized by FTIR and SEM. The nanocomposite shows a high...
متن کاملElectrochemical Chiral Recognition of Naproxen Using L-Cysteine/Reduced Graphene Oxide Modified Glassy Carbon Electrode
The electrochemical response of S- and R-naproxen enantiomers was investigated on L-cysteine/reduced graphene oxide modified glassy carbon electrode (L-Cys/RGO/GCE). The production of the reduced graphene oxide and L-cysteine on the surface of the glassy carbon electrode was done by using electrochemical processes. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were us...
متن کاملGasniGraphene-manganase oxide nanocomposite as a hydrogen peroxidase sensor
A feasible and fast method to fabricate hydrogen peroxide sensor was investigated by graphene-manganase nanocomposite carbone paste electrode. In the present work, in first step, the graphene was synthesized by chemical method and in second step, manganese oxide nanoparticle was doped on graphene. graphene-manganase nanocomposite was characterized by FTIR and SEM. The nanocomposite shows a high...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 85 16 شماره
صفحات -
تاریخ انتشار 2013